Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Microbiol Immunol Infect ; 55(1): 166-169, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1700704

ABSTRACT

This was a preliminary study on ultraviolet C (UVC) irradiation for SARS-CoV-2-contaminated hospital environments. Forty-eight locations were tested for SARS-CoV-2 using RT-PCR (33.3% contamination rate). After series dosages of 222-nm UVC irradiation, samples from the surfaces were negative at 15 s irradiation at 2 cm length (fluence: 81 mJ/cm2).


Subject(s)
COVID-19 , SARS-CoV-2 , Disinfection , Humans , Ultraviolet Rays , Virus Inactivation/radiation effects
2.
Viruses ; 13(12)2021 11 26.
Article in English | MEDLINE | ID: covidwho-1542797

ABSTRACT

To overcome the ongoing coronavirus disease 2019 (COVID-19) pandemic, transmission routes, such as healthcare worker infection, must be effectively prevented. Ultraviolet C (UVC) (254 nm) has recently been demonstrated to prevent environmental contamination by infected patients; however, studies on its application in contaminated hospital settings are limited. Herein, we explored the clinical application of UVC and determined its optimal dose. Environmental samples (n = 267) collected in 2021 were analyzed by a reverse transcription-polymerase chain reaction and subjected to UVC irradiation for different durations (minutes). We found that washbasins had a high contamination rate (45.5%). SARS-CoV-2 was inactivated after 15 min (estimated dose: 126 mJ/cm2) of UVC irradiation, and the contamination decreased from 41.7% before irradiation to 16.7%, 8.3%, and 0% after 5, 10, and 15 min of irradiation, respectively (p = 0.005). However, SARS-CoV-2 was still detected in washbasins after irradiation for 20 min but not after 30 min (252 mJ/cm2). Thus, 15 min of 254-nm UVC irradiation was effective in cleaning plastic, steel, and wood surfaces in the isolation ward. For silicon items, such as washbasins, 30 min was suggested; however, further studies using hospital environmental samples are needed to confirm the effective UVC inactivation of SARS-CoV-2.


Subject(s)
COVID-19/prevention & control , Infection Control/methods , SARS-CoV-2/radiation effects , Ultraviolet Rays , COVID-19/virology , Dose-Response Relationship, Radiation , Hospitals , Humans , SARS-CoV-2/isolation & purification , Time Factors
3.
Int J Mol Sci ; 22(10)2021 May 16.
Article in English | MEDLINE | ID: covidwho-1234743

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is still an ongoing global health crisis. Immediately after the inhalation of SARS-CoV-2 viral particles, alveolar type II epithelial cells harbor and initiate local innate immunity. These particles can infect circulating macrophages, which then present the coronavirus antigens to T cells. Subsequently, the activation and differentiation of various types of T cells, as well as uncontrollable cytokine release (also known as cytokine storms), result in tissue destruction and amplification of the immune response. Vitamin D enhances the innate immunity required for combating COVID-19 by activating toll-like receptor 2. It also enhances antimicrobial peptide synthesis, such as through the promotion of the expression and secretion of cathelicidin and ß-defensin; promotes autophagy through autophagosome formation; and increases the synthesis of lysosomal degradation enzymes within macrophages. Regarding adaptive immunity, vitamin D enhances CD4+ T cells, suppresses T helper 17 cells, and promotes the production of virus-specific antibodies by activating T cell-dependent B cells. Moreover, vitamin D attenuates the release of pro-inflammatory cytokines by CD4+ T cells through nuclear factor κB signaling, thereby inhibiting the development of a cytokine storm. SARS-CoV-2 enters cells after its spike proteins are bound to angiotensin-converting enzyme 2 (ACE2) receptors. Vitamin D increases the bioavailability and expression of ACE2, which may be responsible for trapping and inactivating the virus. Activation of the renin-angiotensin-aldosterone system (RAS) is responsible for tissue destruction, inflammation, and organ failure related to SARS-CoV-2. Vitamin D inhibits renin expression and serves as a negative RAS regulator. In conclusion, vitamin D defends the body against SARS-CoV-2 through a novel complex mechanism that operates through interactions between the activation of both innate and adaptive immunity, ACE2 expression, and inhibition of the RAS system. Multiple observation studies have shown that serum concentrations of 25 hydroxyvitamin D are inversely correlated with the incidence or severity of COVID-19. The evidence gathered thus far, generally meets Hill's causality criteria in a biological system, although experimental verification is not sufficient. We speculated that adequate vitamin D supplementation may be essential for mitigating the progression and severity of COVID-19. Future studies are warranted to determine the dosage and effectiveness of vitamin D supplementation among different populations of individuals with COVID-19.


Subject(s)
Adaptive Immunity , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/immunology , Immunity, Innate , SARS-CoV-2/immunology , Vitamin D/metabolism , Vitamin D/pharmacology , COVID-19/mortality , COVID-19/physiopathology , COVID-19/virology , Cytokine Release Syndrome/complications , Cytokines/metabolism , Humans , Receptors, Virus/metabolism , Renin-Angiotensin System/physiology
4.
Journal of Microbiology, Immunology and Infection ; 2020.
Article | WHO COVID | ID: covidwho-276220

ABSTRACT

Herein, we report that nosocomial infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be mitigated by using surgical masks and closed looped ventilation for both non-critical and critical patients. These preventive measures resulted in no viral contamination of surfaces in negative pressure environments.

SELECTION OF CITATIONS
SEARCH DETAIL